The coarse aggregate specific gravity test (Figure 71) is used to calculate the specific gravity of a coarse aggregate sample by determining the ratio of the weight of a given volume of aggregate to the weight of an equal volume of water. It is similar in nature to the fine aggregate specific gravity test.
The coarse aggregate specific gravity test measures coarse aggregate weight under three different sample conditions:
Using these three weights and their relationships, a sample’s apparent specific gravity, bulk specific gravity and bulk SSD specific gravity as well as absorption can be calculated.
Aggregate specific gravity is needed to determine weight-to-volume relationships and to calculate various volume-related quantities such as voids in mineral aggregate (VMA), and voids filled by asphalt (VFA). Absorption can be used as an indicator of aggregate durability as well as the volume of asphalt binder it is likely to absorb.
The standard coarse aggregate specific gravity and absorption test is:
Specific gravity is a measure of a material’s density (mass per unit volume) as compared to the density of water at 73.4°F (23°C). Therefore, by definition, water at a temperature of 73.4°F (23°C) has a specific gravity of 1.
Absorption, which is also determined by the same test procedure, is a measure of the amount of water that an aggregate can absorb into its pore structure. Pores that absorb water are also referred to as “water permeable voids”.
Aggregate specific gravity is used in a number of applications including Superpave mix design, deleterious particle indentification and separation, and material property change identification.
Superpave mix design is a volumetric process; it relies on mixing constituent materials on the basis of their volume. However, aggregate and asphalt binder volumes are diffucult to measure directly, therefore a material’s weight is typically measured and then converted to a volume based on its specific gravity. Correct and accurate material specific gravity determinations are vital to proper mix design. An incorrect specific gravity value will result in incorrect calculated volumes and ultimately result in an incorrect mix design.
Specific gravity can also indicate possible material contamination. For instance, deleterious particles (Figure 2) are often lighter than aggregate particles and therefore, a large amount of deleterious material in an aggregate sample may result in an abnormally low specific gravity.
Finally, specific gravity differences can be used to indicate a possible material change. A change in aggregate mineral or physical properties can result in a change in specific gravity. For instance, if a quarry operation constantly monitors the specific gravity of its output aggregate, a change in specific gravity beyond that normally expected could indicate the quarrying has moved into a new rock formation with significantly different mineral or physical properties.
Aggregate absorption is the increase in mass due to water in the pores of the material. Aggregate absorption is a useful quality because:
It is generally desirable to avoid highly absorptive aggregate in HMA. This is because asphalt binder that is absorbed by the aggregate is not available to coat the aggregate particle surface and is therefore not available for bonding. Therefore, highly absorptive aggregates (often specified as over 5 percent absorption) require more asphalt binder to develop the same film thickness as less absorptive aggregates making the resulting HMA more expensive.
Several different types of specific gravity are commonly used depending upon how the volume of water permeable voids (or pores) within the aggregate are addressed (Figure 3):
Refer to Figure 4 for abbreviations.
The following description is a brief summary of the test. It is not a complete procedure and should not be used to perform the test. The complete procedure can be found in:
The mass of a coarse aggregate sample is determine in SSD, oven-dry and submerged states. These values are then used to calculate bulk specific gravity, bulk SSD specific gravity, apparent specific gravity and absorption. Figure 72 shows major coarse aggregate specific gravity equipment.
3 days (from sample preparation to final dry weight determination)
If the aggregate is not oven-dried before soaking, specific gravity values may be significantly higher. This is because in the normal procedure the water may not be able to penetrate the pores to the center of the aggregate particle during the soaking time. If the aggregate is not oven-dry to start, the existing water in the aggregate pore structrure may be able to penetrate further into the pores (AASHTO, 2000c[1]).
Make sure to use cloth and not paper towels. Paper towels may absorb water in the aggregate pores.
There are no minimum or maximum specific gravity or absorption values in Superpave mix design. Rather, specific gravity is an aggregate quality needed to make required volume calculations. Some state agencies specify minimum aggregate specific gravities or maximum percent water absorption to help control aggregate quality.
Specific gravities can vary widely depending upon aggregate type. Some lightweight shales (not used in HMA production) can have specific gravities near 1.050, while other aggregate can have specific gravities above 3.000. Typically, aggregate used in HMA production will have a bulk specific gravity between about 2.400 and 3.000 with 2.700 being fairly typical of limestone. Bulk SSD specific gravities can be on the order of 0.050 to 0.100 higher than bulk oven dry specific gravities, while apparent specific gravities can be 0.050 to 0.100 higher still./p>
For a particular aggregate type or source, fine aggregate specific gravities can be slightly higher than coarse aggregate specific gravities because as the aggregate particles get smaller, the fraction of pores exposed to the aggregate surface (and thus excluded from the specific gravity calculation because they are water-permeable) increases./p>
Aggregate absorption can also vary widely depending upon aggregate type. Some lightweight shales (not used in HMA production) can have absorptions approaching 30 percent, while other aggregate types can have near zero absorption. Typically, aggregate used in HMA production will have an absorption between just above zero and 5 percent. Absorptions above about 5 percent tend to make HMA mixtures uneconomical because extra asphalt binder is required to account for the high aggregate absorption./p>
If absorption is incorrectly accounted for, the resulting HMA could be overly dry and have low durability (absorption calculated lower than it actually is) or over-asphalted and susceptible to distortion and rutting (absorption calculated higher than it actually is)./p>
Three different masses are recorded during the test. Their common symbols are:
A = mass of oven-dry sample in air (g)
B = mass of SSD sample in air (g)
C = mass of SSD sample in water (g)
These masses are used to calculate the various specific gravities and absorption using the following equations:
Note that the quantity (B – C) is the mass of water displaced by the SSD aggregate sample. In the apparent specific gravity calculation the mass of the SSD aggregate sample is replaced by the mass of the oven-dry aggregate sample (A replaces B), which means that the water permeable voids within the aggregate are not included and (A – C) is the mass of water displaced by the oven-dry sample.
The ratios given in the equations are then simply the ratio of the weight of a given volume of aggregate to the weight of an equal volume of water, which is specific gravity.
Certainly, the accuracy of all measurements is important. However, of specific concern is the mass of the SSD sample. The determination of SSD conditions can be difficult. If the sample is actually still wet on the surface then the mass of the SSD sample will be higher than it ought to be, which will cause a lower calculated bulk specific gravity. Conversely, if the sample is beyond SSD and some of the pore water has evaporated (which is more likely), the mass of the SSD sample will be lower than it ought to be, which will cause a higher calculated bulk specific gravity. Either type of error will have a cascading effect on volumetric parameters in other tests that require specific gravity as an input and Superpave mix design.
A quick check of the results should show that bulk specific gravity is the lowest specific gravity, bulk SSD specific gravity is in the middle and apparent specific gravity is the highest.